PROTEIN

Edith Frederika

Introduction

- A major component of food is PROTEIN
- The protein ingested as part of our diet are not the same protein required by the body
- Only 40 to 50 gr of protein is required by a normal adults
- supply essential amino acids
- replace the amino acid nitrogen converted to urea

AN	IINO	ACIDS	
TIV			

AMINO ACIDO			
ESSENTIAL			
Arginine			
Histidine			
Isoleucine			
Leucine			
Lysine			
Methionine			
Phenylalanine			
Threonine			
Tryptophan			
Valine			

Amino acid synthesis

- Amino acid than can be synthesised in the human body: Non Essential
- → Synthesised from the products of their catabolism (acetyl CoA, pyruvate)
- Amino acid than must be supplied in the diet: Essential
- → Synthesised in micro organism (bacteria) and passed through the food chain

Facts about protein

- Proteins contain carbon, hydrogen, oxygen, nitrogen, and sometimes other atoms.
- They form the cellular structural elements, are biochemical catalysts, and are important regulators of gene expression.
- Nitrogen is essential to the formation of twenty different amino acids, the building blocks of all body cells.

- Most of the protein is broken down into amino acids and absorbed by the small intestine
- Large molecules cannot be absorbed from the gut
- Therefore....these proteins are digested and their component amino acids absorbed into the blood stream

CONTINUE...

- •Protein provides:
- (1) Amino acids for protein synthesis
- (2) Nitrogen atoms for nitrogencontaining compounds
- (3) Energy → when carbohydrates and lipid resources are not available

CONTINUE..

•Amino acids are characterized by the presence of a terminal carboxyl group and an amino group in the alpha position, and they are connected by peptide bonds.

USES OF AMINO ACID IN THE BODY

- Protein synthesis
- very important during growth
- In adults: new protein synthesis is directed towards replacement of proteins as they are constantly turned over

- Synthesis of a variety of other compounds
- → Purines and pyrimidines (components of nucleotides)
- → Catecholamines (adrenaline and non-adrenaline)
- → Neurotransmitters (serotonin)
- → Histamine
- → Porphyrins
 (central oxygen binding components of haemoglobin)

As a biological fuel

→10% energy production in humans is from amino acids.

→ Higher in carnivores (the diet is almost entirely protein)

- Protein are broken down into small peptides and amino acids

 absorbed in the small intestine
- In the stomach:
- → HCL protein denaturation activate pepsinogen digestive enzyme into pepsin
- The break down of proteins to peptides and is catalyzed by pepsin

- In the small intestine:
- The break down of protein to peptides is catalyzed by the pancreatic enzymes: trypsin and chymotrypsin

- Peptides are broken down into amino acid by pancreatic carboxypeptidase and intestinal aminopeptidase
- Small peptides consisting of two or three amino acids that can be actively absorbed into epithelial cells
- Then...broken down into amno acid -> released into the blood.

Digestion breaks protein down to amino acids.

- If amino acids are in excess of the body's biological requirements
- they are metabolized to glycogen or fat and subsequently used for energy metabolism.

- If amino acids are to be used for energy
- → their carbon skeletons are converted to acetyl CoA
- which enters the Krebs cycle for oxidation, producing ATP.
- The final products of protein catabolism include carbon dioxide, water, ATP, urea, and ammonia.

Amino acid -- carbon skeleton:

Acetyl CoA

→ TCA cycle CO2

→ ketogenesis., lipogenesis

Pyruvate

→ TCA cycle

→ gluconeogenesis

AMINO ACID METABOLISM

- excess protein is not stored in the body
- reformed in the liver to compounds containing nitrogen, and compounds that do not contain the element nitrogen
- Then synthesized into UREA
- Urea is transported along with other waste substances to the kidneys and excreted in urine

- Amino acids > "transamination"
- Together with glucagon → urea cycle

- "Transamination"
 - → Amino acids alpha ketoglutamate
- "oxidative deamination"
 - → to form Amomnia
 - → synthesis Urea

Amino Acid and Protein Metabolism

Summary

- Stomach
- → HCl: denaturasi protein & activate pepsinogen
- → Break down of protein (pepsin) into peptides / polypeptides
- Small intestine
- → Break down of protein by pancreatic enzyme: trypsin, chymotrypsin, into peptides

- Peptides → by carbosipeptidase & intestinal aminopeptidase → Amino acids
- Bring to duodenum, absorbed into epithelial cells
- Amino acid absorbed \rightarrow cells \rightarrow blood

- If amino acids are in excess of the body's biological requirements:
 - →they are metabolized to glycogen or fat and subsequently used for energy metabolism.
- If amino acids are to be used for energy:
 - (1) Converted to acetyl CoA
 - (2) Converted to pyruvate

- Converted to acetyl CoA:
 - → their carbon skeletons are converted to acetyl CoA
 - → enters the Krebs cycle for oxidation (ketogenesis. Lipogenesis)
- Converted to pyruvate:
 - →enters the Kreb cycle (gluconeogenesis)

From Kreb Cycle:

- →producing ATP
- → The final products of protein catabolism include carbon dioxide, water, ATP, urea, and ammonia.

[Excess Protein – not stored in the body]

- Transamination → convert amino acid into alpha-keto glutamante
- Oxidative deamination → to form Ammonia
- → used for synthesis urea
- Excess protein → liver → separated compounds contain N and compounds without N
 i.e. (NH₃) or (NH₄OH)
- Synthesised → UREA (liver) → transported to Kidney
 → excreted (urine)

BIOSYNTHESIS PROTEIN

- •Biosinthesis = gene expression
- →DNA gene kode → "transcription" into RNA (in ribosom) → protein
- →Ribosomes are made from complexes of RNAs and protein
- o "Translation" → polypeptides
- oPost translation → PROTEIN

THANK YOU

